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. IMPACT OF FINITE BEAMS OF DUCTILE METALl

by
Pe Se Symonds and Ce=~Fs A, Leth
(Brown University)

Abgtract

An analysis is here presented of the large plastic
deformations of a beam under impact such as that due to a blow
of a massive hammer, in which one cross-section is suddenly
forced to move with a given velocity, The analysis treats both
the case in which the velocity of the struck section is main-
tained constant until the total permanent deformation is acquired
and cases of interrupted impacts in which the force at the struck
section 1s suddenly removed after an arbitrary contact time., A
complete solution in general non-dimensional form is obtained
in a simple manner by basing the analysis on the assumption of
"plastic-rigid" behavior, and results can be expected to be
valid when the plastic deformations are large enough. Criteria
for the validity of the present results are discussed, based on

the major assumptions of the analysise

1. The results in this paper were obtained in the course of
research conducted under Contract N7onr-35810 between the
Office of Naval Research and Brown University.
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l. Introduction

We consider the problem of a uniform beam of arbitrary
length, initially at rest, which is subjected to a concentrated
impact load at its mid-point such that the mid-section of the
beam instantaneously acquires a velocity V which is then main-
tained constant. Bohnenblust [1]* treated the corresponding prob-
lem for the case of an infinitely long beam, in general terms for
an arbitrary moment-curvature relation. It was recently dis-
cussed again by Conroy [2], who 1nvestigated the simplifications
obtainable by neglecting the elastic part of the deformationsyand
took, 1n particular, moment-curvature relations of the two types
shown 1in Fig, 13 again only infinitely long beams were considered.

The solution presented here is another example of the
analysis of large plastic deformations in a finite structure sub-
Jected to a dynamic load, on the basgis of the moment-curvature
relation of Fig. 1(a)e In this "plastic-rigid" type of analysis
it 1s assumed that infinitely large curvatures can occur at cross=-
sections where the bending moment maintains the magnitude Mo,
the "1limit moment" or "fully plastic moment" used in limit analy-
sis of structures under static loads. The concept of localization
of deformations at such "plastlc hinge" sections is assumed to be
applicable to problems of dynamic loading of structures of duc=-
tile metal provided the energy absorbed in plastic deformations
greatly exceeds that which could be absorbed in a wholly elastic
manner., Based on this hypothesis criteria were given in a
previous paper [3] for the validity of the solutions obtained,

and similar criteria are given in the present paper for the new

* Numbers in square brackets refer to the Bibliography at the
end of the paper,
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solution presented here,

Earlier papers [3, 4, 5] dealt with finite beams sub-
jected to force pulses with specified magnitudes and shape. Our
main purpose in treating the present problem was to obtain a
solution which could be treated more easily experimentally than
the previous solutions obtained; the imposition of a known veloc=-
ity involves fewer experimental difficulties fhan the application
and heasurement of a specifled force-time curves The present
problem was emphasized by Vigness [6] in discussion of [3] as
of interest from the point of view of experimental verification

of the general method,

2. Analvgig
For simplicity we treat the problem of a beam moving

initially with velocity V normal to its lengthe At time t =0
the mid-section 1s instantaneously brought to rest by contact
with a rigid stops It is obvious that the subsequent deforma-
tions will be identical with those which would be produced if
the bar, initlally at rest, were struck so that the mid-section
suddenly acquires and maintains the velocity Vs The beam 1is
taken to have uniform mass per unit length m, limit moment M,
and length 24, A typical cross-section will be specified by its
distance x from the center of the beams (Fige 2)e

For a sufficiently small time interval after the bar
strikes the stop, its deformation will be indistinguishable from
that of the infinite beam treated by Conroy [2]), Hence 1t will
be expected that the force on the beam will vary initially as
1/ /%, and that plastic hinges will occur at the mid-section and
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at two crosse-sections each at a distance xj from the centerj xp
will be expected to increase initially in proportion to \/5.
The analysis of the present problem will therefore be based on
the diagrams of Fig. 3. From the symmetry of the problem 1t is
obviously enough to consider either half of the beam. The seg-
ments OH and HB are subjected to end moments as shown. At the
center of the heam there is a reaction force R exerted by the
stop so that a shear force R/2 acts as shown on the one segment,
Howevef, there is no shear force at cross-section x = xy, where
the travelling hinge 1s located at a given instant, since this
is a cross-seéction where the bending moment has a relative maxi=-
mums thus dM/dx = Q = Os The loading on the segments includes
also the distributed inertia forces due to the accelerations.
It can be verified that although they are changing in length, at
any instant the two segments move as rigid bodies (hinged to-
gether as shown) since at any instant the complete set of loads
is such that the bending moment reaches the magnitude M, only
at the sections x = O and x = x,« The lateral hinge moves out-
ward (i.e., x, increases with time) so that the segment OH
acquires a permanent deformation, but since the moment in the
interior of the segment HB is always less than M, in magnitude
the segment to the right of the travelling hinge at any instant
is undeformed.

Iet the angular velocities of the segments OH and HB
be w, and wyy respectively, Writing moment-angular acceleration
equations with respect to the fixed point O in one case and the
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center of gravity of the segment in the other, we obtain1
dw
% mxg aﬁ E e 2M° (1)
dw
-L - 3 - .
= m(d - xp) B._'El M, (2)

The following equation expresses the fact that the change of
moment of momentum of the half-besam OB with respect to an axis
at 0 is equal to the angular impulse of the moment My acting

during the time t:
2 2
Mot = [F mlug = )3, = 1) + 4 wbda ] - LotV ()

The expression in brackets is the moment of momentum at any time
ty while the last term 1s the initial moment of momentum of the
half=-beam.

Equations (1) -~ (3) are the basic equations of the
analysis from which, together with appropriate initial conditions
the three unknowns xp, w,y w; are to be founds It is now con-
venient to rewrite the equations in terms of new dimensionless

variables defined as follows:

I, These equations are correct despite the fact that xj is a
function of time, because the velocities of elements Just
to the left and 3ust to the right of the travelling hinge
are equal at any instant, Thus, although the segment of
length xy, 1s increasing in leng%h, the element joining it
in time Bt comes in with the same velocity as the end of
the sggment, and there is no impulsive contribution to the
momentum,
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Q:%uo; ‘b:%ul’ (%)

Mt X
= g =20, (5)

A

Equations (1) - (3) now take the following forms:
- a9 _

mzﬁ_-%, (6a)
! E%w._._;_z___, (6D)

" -3
3-6n=(2- VGEE- ) + 24 (6c)

We will henceforth use a prime to denote differentiation with
respect to n, The initial conditions may be taken as

1 = 03 E = 03 ] O. (7)

From Eq. (6c) this implies that (Q§), = 1, so that in this type
of impact there is initially a singularity in the angular veloc-
ity at the point of impact.
We begin the solution of Eqs. (6) by differentiating

Eqe (6c) with respect to n, making use of Egs. (6a) and (6b) and
simplifying to obtain the relation

Q'M%%'m]' (8)
For completeness, we note that the above result may be derived
from a quite different viewpoint, namely by differentiating the
equation which expresses the fact (as shown in [3]) that veloc-
ities are continuous at the hinge section, Equation (8) can

thus be identified as expressing the fact that accelerations are
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discontinuous across the moving hinge section.
A second differentiation of Eq. (8), substitution

again of Q' and V' from Eqs. (6a) and (6b), and rearrangement
leads to the following equation for §&s

1 =2 fepn 4 g% 2o, (9)
(1-82

which 1s to be solved subject to the initial conditions (7). A
first integration of Eq, (9) can easily be performed since the

independent variable does not appear explicitly, ILet E! = p(E);
then

_dp(E) a8 _ , dp _ _ dp
;u_dg aﬁ_gsag_paz.

With this substitution Eq., (9) becomes

1«28 a
g_.B+p=0
[(1 - C)Q.J at

if 1t is assumed that p'# Os Integration of the above yields
£/2 1/%
e (ltEAZQl .

n=4A | Z&—_d% 4+ B (10)

where A and B are constants to be evaluated by means of the ini=-
tial conditions Eq. (7)e The numerical evaluation of the integral
in Eq. (10) 1s speeded by making the substitution (1 - 2z) = L4g,

Integration by parts and rearrangement then leads to the following

form
o n=ale*2 (1 - 2{)3/h + 2F(E)] + B (11)
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where
F(E) = V2 e-l/u s-l/uesds - % .
#(1-2¢)
The advantage of this form appears when the integrand in Eq. (11)

is expanded in a power series; term by term integration then

leads to the following rapidly converging series for F(E):

n
F(E) = 0,07952 - 20=1/%(1 - 2)3/% 3% _ (1 = 28) -
n=0 n}(3 + Un)k

Equations (6) and (8) can now be integrated to give the dimen-

sionless angular velocities as follows:

Q- % + 64 L% (1 = 2£)3" o~%/2 _ p] . 3B (12a)

(2 = E)(L ~ 28)3/ o~8/2
- 64 -
(1 - E)

After applying the initial conditions (7) to Eqs. (10) and (1 2b)

¢=% +F] - 3B, (12b)

we find that A and B must have values B = 0, A = 1/6. Thus
and n are related by
6n = e"/a (1 - 25)3/1* + 22 e"l/lF s"l/l*esds -1 (13)
$(1-28)

It can be seen from the denominator in Eq., (10) that
the above solution is valid only for O £ § <'%. This is the

range we are interested in, as will be seen shortly,



The deformations of main interest are the angles @,
and €; at mid-point and tip, respectively, and the permanent
curvature x of the part of the bar through which the lateral
hinge has travelled., We have the following general formulas

for the angles t 5 £
O = [wodt = mﬁz i g% ag (14)
v JO
o, = oo
1 = | wdt = > ET ag . (15)
JO O\JO

The change 40 of the angle of the beam across the lateral hinge

has the value
a8 = (wy = ul)dto

Then 2
a0 _ _mv© Q -
u=-a-}-c—(w°-w1)%§c-m-ﬁ;——£-|m
2 1/2 =&
ve (1 = 2E)™ “e
" = . (16)
& (1- 62
Mumerical results are tabulated in Table I.
Iable I
¢ @ | ¥ | =2 %0y |3 ¥
1 mpV2 ity L |V
0 o oo 0 0] 0 0. 1667
0.05 | 0.0002 |19.524%{0.,003 | 0.0083 |0.0000 | 0,1667
010 | 0,0008 | 9,045{0.012 { 0,0167 {0.0000 | O, 1665

0,15 | 040019 | 6.583 0.021 0,0250 |0.0000 | 0.1661
0,20 | 0,003% | 4, 883:0,063 0.833% 0,0001 | 0, 1652
0425 {0.0053 | 3.845{0,114 {0.0418 [0,0003 | 0.1632

0430 | 0.0078 | 36136 {0,191 |0,0502 [0s0007 | 0.159%
0.35 0,0108 | 2,610|0,309 |0.05988 |0,0013 0.1528
0,40 | 0,014+ | 2,191 /0,491 |0,0676 [0.0029 | 0,138

0,45 | 0.0191 | 1,82910.786 {0,0769 10,0059 | 0,1111
0,50 |0,0265 | l.421|l.421 |{0,0888 |0,0138 | 0.,0000
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The previous analysis is based on the configuration
of Fig. 3. This type of motion continues until the angular
velocities of the inner and outer segments become equal, l.e.,
until Q@ = ¢, From Eq, (8) this happens when

E]E - —(-1—-1-5:)-2 = 03 therefore &g = % (17a)
where Es denotes the final value of the hinge coordinate, The

corresponding value of the dimensionless time is
Mg = 0.0265, (17b)

For later times n > g there is a plastic hinge at
the mid-section only, and the two halves rotate as rigid bars
pinned at one ends The equation of angular acceleration of the

right-hand half, in dimensionless variables, 1s
%Q'—l- - - 3. (18)

Hence in this final phase of the motion we have

M
020
mV
Making use of the conditions n, = 0.0265, Qg = 1l.u421,

2
o= = % N- +eyN+ Cohe

= O = 0.0888, as given in Table I, we obtain
v

Q = 1,500 -« 37 (19a)

M
;L-:z 90 = 0,0500 + 1, 5') -1, 5!"20 (19b)

Thege hold until Q = 0, or, from Eq, (19a), until g = Ngy Where
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M.t
- _of _ )
Ne S = 0. 500 (20a
£ = iy
The corresponding final value of the angle 6, 1s
2
o) Mo

The growth of the deformations with time is shown in Fig. U
Some simple checks on the above results are of interest.
First, we note that the momentum relation Eq. (éc), evaluated

at the time Ngs becomes

3 -6ng =2

Taking values from the last line of Table I the two sides of the

equation have values

3 - O, 1590 = 2, 8""1; 2 x 101"'21 2e 342

which is a satisfactory check, Again, from Eqe (6c) the time
ne at which the deformation is completed 1s given by

3-6np =05 M=%

which verifies the value of Eq, (20a) computed from the tabulated
values,
Finally, the energy relations may be examined. Before

the beam hits the rigid stop it has the kinetic energy E
E = 3(m2t)v? = ntv?,

When the motion has ceased, thls energy has been spent in work
at plastic hinges. The total energy absorbed in plastic deforma-

tions is W, where
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W= 2Mg00p + 200 = 0,0

Inserting values from Eq., (20b) and Table I this becomes

2
W = 2M (0,425 Eﬁ%—) + 2M,(0.0750 i‘%‘;) = 1,000 mtve,

Thus the necessary energy balance is checked,

We may also compare the results obtained here with those
obtained by Conroy [2]. It is there shown by equations (2) and
(20) that 129 = 52 for an infinitely long beame Our result
should converge to this value for small {. We expand the right-

hand side of Eq. ( 13) as a power series in §, as follows:

o821 - )M 21 - +1 €2 + o@e3d)
1/%
i =-J2é o1/* £ +0(82),
&(1-2{) S

Hence Eq. ( 13) reduces, for small §, to

| = —-l- Ez + 0(53)0

12 (21)

Furthermore Conroy shows by Eqs. (20) and (26) that the
shear force at the center varies as -%-\/::l] ;{Q « The moment equili-
brium for the inner part of the beam around its center of gravity
requires

mx3 ,

Transforming this into dimensionless coordinates we get

pz=8+J3.e:3 Q! (22)

where p = ﬁfr. With the use of equation (6a) we get
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-6, (23)
b=y

In the limit for small £ we have E= V12n, Hence in the limit
TR V%, which agrees with the result in [2].

For completeness we finish the analysis with the calcu=-
lation for the motion of the beam if the support is removed at
a time t = © < E%EK Nge The subsequent motion (t >7 ) is to be
determined by analysis appropriate to a beam acted on by no ex-
ternal loads. Such an analysis is described in [4], There it 1is
shown that when lateral hinges are present at ﬁhe instant the
central force is reduced to zero the lateral hinges then move
with constant velocity until the angular velocities become
equalizeds By simple calculations, using Egs, (20) - (29) of

Ref [4], one can find the inerements in angular velocities and

displacements which occur after removal of the force at arbitrary

times 7, corresponding to dimensionless times e = ::;V < 045,
Fig, 6 shows a curve of final deformation angles resulting from
"interrupted impacts" of various durations, plotting Mbqﬂym£v2
against MGT/N&?V. The shape of the force-time curve concerned

here is indicated in Fig. 5.

We consider now the implications for experimental come
parisons of two major assumptions involved, namely the neglect of
all elastic deformations by comparison with plastic deformations,
and the neglect of shape changes throughout the analysis.

The first assumption can be expected to be valid [3] if
the total energy absorbed in plastic deformations greatly exceeds
the maximum possible amount of glagtic strain energy that could
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be stored in the beams In the present case this implies that
s MR

Mg0or = mAV™ >> =2

where EI 1is the elastic flexural rigidity. Thus for the present

results to be good approximations one requirement is that

2

V" o> h—%T . (214-3)

Alternatively the above requirement may be expressed as

V2 > n«géi (24b)

where n 1s a number which presumably 1s of the order of 10.

A further requirement is set by the assumption of
negligible shape changes, i.e., the use of coordinates referring
to the undeformed rather than to the actual beam. This assump-
tion actually restricts the magnitude of the central angle €,
attained only during that part of the response in which deforma-
tions are occurring at lateral hinges; when only the central
hinge 1s present-the equations apply to deformation angles of
unrestricted magnitudes From Table I the maximum value of €,
obtained while the lateral hinges are present is 0.0888 mdV-/M,;
if we assume that this does not exceed about 0,15 radians, we

have the additional inequality:

0. 0888 m%’z- < 0,15, (25)

This imposes a limitation on the length-depth ratio of the beam,
if the requirement of inequalities (24) is taken into account.

Let (24b) be taken as an gquatiopn and conbined with the inequality
(25). We obtain
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< %:—égag = 1. 70 (26&)

But the limit moment M, can be computed [7] as

n

S

i, = 00,2 = a0, Eh (2

where the "shape factor" @ 1s a number of the order of unity
which depends on the shape of the cross-section and has the value
1.5 for a rectangular cross-sectionj Oy 1s the yield stress;

and Z = 2I/h is the elastic section modulus, il.e., quotient of
moment of inertia I and half-depth h/2. Using this formula for

M, the inequality (26a) can be written as
o
—l— -l )
-2% > hs na (26b)

Since dy/E 1s of the order of 1073 for steel, and a
will probably be about 1«5, it is seen that the restriction of
small shape changes requires only that h/2% exceed about 1/100,
for n = 10. Hence it is clear that this restriction would intro-
duce no experimental difficulties.

Finally the order of magnitude of V demanded by in-
equality (24b) is of interest. We use Eq. (27) and write also

m=pA, I= A12, E/p = cg, and obtain

o
v V P AYS
2 n co( E)(%7§) (24e)
where
¢, = VE/p = speed of longitudinal elastic waves

mass density

cross-sectional area

radius of gyration

depth of beam |

a = shape factor (defined in connection with Eq. (27).

5 = » ©
]
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Thus for steel with e, = 16,000 ft/sec., o/E = 10™3 and a
rectangular cross-section, 1f n = 10 we find that V must exceed
about 45 ft/sece

The main purpose of a laboratory test program would be
to determine under what circumstances, if any, the plastice-rigiad
type of analysis ylelds satisfactory results for the major plas-
tic deformations. The fundamental assumption 1s that elastic
deformations are negligibles To find the range of usefulness of
this assumption, a series of tests could be made with the objec-
tive of determining the value of the number n used in Eq. 2ib,
above which the rigid-plastic analysis predicts deformation in
good agreement with those observed in the tests, If the elastic
deformations are the only important physical effect which is
ignored then such a series of tests will yleld a definite value
of n, such that when the total energy absorbed is at least n
times the maximum possible elastic energy the beam could carry;
the present type of analysis will be suitables A value of n
determined for the présent case of velocity impact would probably
have significance for other types of problems of dynamic loading.

In any experiments other physical effects will occur
which have been neglected here, and these might turn out to be
so important that the present type of analysis does not yield
accurate results even though the criterion based on elastic
energy 1s satisfieds Among the physical phenomena which have
been ignored are:

(a) straip-hardening, which will occur to some degree at

cross~sections where plastic hinge action occursj;
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(b) speed of loading effect on the yield-stress and post=-
yield properties, as, for example, reported by Manjoine

[8] and Nadai and Manjoine [9];

(¢c) effect of trangverse shear forcesg which are known to
reduce the limit moment below that which can be reached
in pure bendingj in the present problem the shear force
at the struck section has large values in the initial
instants of the impact;

(d) fiplte contact areg of the hammer or stop; the study
in Ref. [5] of distributed as compared with concentrated
loads showed that even a very small degree of spreading
of the load over a finite segment may appreciably re=
duce the magnitude of the final deformations;

(e) finite time of acceleration; 1t was assumed that the
hammer or stop was perfectly rigid and that the velocity
of the struck section was instantaneously acquired or
annihilated; since any physical hammer or stop hés
finite rigidity there 1s a finite time of acceleration;
in fact the contact will probably be jntermittent during
the initial instants of the impact, as is known to be
the case in the elastic impact of a mass on a beam.

All but one of the foregoing effects, 1f taken into
account, would tend to reduce the deformations below those given
by the present analysis. The single exception is the effect of
transverse shear forces, which tend to weaken the beam and hence
if properly taken into account would cause the analysis to predict

larger deformation magnitudes than those of the present theory,
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If the transverse shear effect is minimized by use of compact
sections and fairly large ratios of span to depth, the other
effects would presumably predominate, and cause the present
analysis to overestimate the deformations,

Finally, it should be re-emphasized that a fundamental
presupposition throughout the paper 1s that the material has
sufficient ductility under dynamic conditions so that rupture
does not occur before the predicted final deformations are
attained, The present type of analysis should be regarded as a
basic one, particularly attractive for its simplicity and
generality, but which may have to be refined in particular cases,
Carefully planned and interpreted tests are needed., They will
be an invaluable aid in assessing the range of usefulness of
the present type of analysis and in showing the directions in

which refinements are most urgent.
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(Temp., U)

Washington 25% D.C.

Attnt Major B.D. Jones (1)
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Chief of Staff

Department of the Army

Research & Development Div,

Washington 25, D, C.

Attn: Chief of Res,fDev. (1)

Office of the Chief of Engineers

Assistant Chief for Works

Department of the Army
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Washington 25, D,C.

Attn: Structural Branch
(R.L. Bloor) (1)

Ingineering Research and

Development Laboratory
Fort Belvoir, Virginia

- Attn: Structures Branch (1)
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Office of the Chief of Engineers
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Construction

Department of the Army

Bldg, T-3, Gravelly Point
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(M, F, Carey)
Protective Construction
Branch (I. O, Thornley)

Office of the Chief of Engineers

Asst, Chief for Military
Operations

Department of the Army

Bldz, T-7, Gravelly Point

Washington 25, D. C. _ .

Attn: Structures Development
Branch (W.F. Woollard)

U.S. Army Waterways Experiment
Station

P. 0. Box 631

Halls Ferry Road

Vicksburg, Mississippi

Attn: Col, H. J. Skidmore

The Commanding General
Sandia Base, P, 0., Box 5100
Albuquerque, New Mexico
Attn: Col, Canterbury

Operations Research Officer
Department of the Army

Ft. Lesley J. McNair
Washington 25, D, C,

Attn, Howard Brackney

Office of Chief of Ordnance
Office of Ordnance Research
Department of the Aruy

The Pentagon Annex ;2
Washington 25, D. C,

Attn: ORDTB-PS

Ballistics Research Laboratory
Aberdeen Proving Ground
Aberdeen, Marvland

Attn:s Dr, C. W, Lampnson
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Department of the Navy
Washington 25, D, C.
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Department of the Navy
Washington 25, D, C,

Attn: Director of Research (2)
Code 423 (1)
Code 442 (1)
Code 421 (1)

Director, David Taylor Model Basin
Department of the Navy

Washington 7, D. C.
Attn: Code 750, Structures
Division (1)

Code 740, Hi-Speed
Dynamics Div, (1)

Commanding Officer

Underwater Explosions Research Div,

Code 290

Norfolk Naval Shipyard

Portsmouth, Virginia (1)

Commander

Portsmouth Naval Shipyard

Portsmouth, N, H,

Attn: Design Division (1)

Director, MNaterlals Laboratory

New York Naval Shipyard

Brooklyn 1, New Yorlk (1)

Chief, Bureau of Ordnance

Department of the Navy

-Washington 25, D, C.

Attn: Ad-3, Technical Library (1)
Rec, P, H. Girouard (1)

Naval Ordnance Laboratory
White Oak, Maryland
RFD 1, Silver Spring, Maryland
Attn:s Mechanics Division
Explosive Division
Mech, “valuation Div,

Commander

U.S. Naval Ordnance Test Station
Inyokern, California

Post Office - China Lake, Calif,
Attn: Sclentific Officer (1)
Naval Ordnance Test Station
Underwagter Ordnanck Division
Pasadena, California

Attn: Structures Division (1)
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Washington 25, D,C, The Pentagon

Attn: TD-41, Technical Librery Washin-ston 25, D. C.
(1) Attn: Res.é& Development Div,(1)

Chief, Bureau of Ships Deputy Chief of Staff, Operatlons
Depar%ment of the llavy Alr Targets Division
Wasninzton 29, D, C. Headquarters, U.S. Air Force
Attn: Code P-31k (1) Wwashington 25, D, C. .
Code C-313 (1) Attn:s AFOIN-T/PV (1)
Officer in Charge Office of Air Research
Naval Civil Engr, Research & Wright-Patterson Air Force Base
Evaluation Laboratory Dayton, Ohio
Naval Station Attn: Chief, Applied Mechanlcs
Port Hueneme, California (1) Group (1)
Superintendent e) Other Government Agencies
U.S. Naval Post Graduate School
Annapolis, Maryland (1) U.,S. Atomic Energy Commission
Division of Research
Washington, D. C. (1)
Director, National Bureau of
Standerds
Washington 25, D. C.
Attn: Dr. VW.H. Ramberg (1)
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Professor Lynn Beedle
Fritz Engineering Laboratory
Lehigh University
Bethlehem, Pennsylvania 1 -
Professor R.L, Bisplinghoff
Dept. of Aeronsutical Engineering
Massacihusetts Institute of Technology
Cambridge 39, liassachusetts 1 1

Professor Hans Bleich

Dept. of Civil “ngineering

Columbia University

Broadway at 117th §t.

New York 27, New York 1 1
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Professor B,A, Boley

Dept. of Aeronautical Engineering

Ohio State University

Columbus, Ohio 1l

Professor G,F, Carrier

309 Pierce Hall

Farvard University

Cambridge, Massachusetts 1

Professor R.J. Dolan

Dept. of Theoretical & Applied
Mechanics

University of Illinois

Urbana, Illinois 1

Professor Lloyd Donnell

Department of Mechanics

Illinois Institute of Technology
Technology Conter

Chicago 16, Illinois : 1

Professor A.C. Eringen

I1linois Institute of Technology
Department of Mechanics

Technology Center

Chicago 16, Illinois 1

Professor B, Fried

Dept. of Mechanical Engineering
Washington State College

Pullman, Washington 1

Mr, Martin Goland
Midwest Research Institute
049 Pennsylvania Avenue
Iansas City 2, Missouri 1

Dr. J.N. Goodier

School of Tngineering

Stanford University

Stanford, California 1

Professor R.,M. Hermes

College of Engineering

University of Santa Clara

Santa Clara, California 1

Professor R,J, Hansen

Dept. of Civil & Sanitary Engineering

Massachusetts Institute of Technology

Cambridge 39, Massachusetts 1
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Professor M., Hetenyi

Walter P, Murphy Professor
Northwestern University

Zvanston, Illinois 1

Dr. N.J, Hoff, Head

Department of Aeronautical

Engineering & Apnlied Mechanics
Polytechnic Institute of Brooklyn
Brooklyn 2, New York 1

Dr. J.H. Hollomon

General Electric Research Laboratories
1 River Road

Schenectady, New York 1

Dr. W,H. Hoppmann

Department of Annlied Mechanics

Johns Hopkins University

Baltimore, Maryland 1

Professor L.S. Jacobsen

Department of Mechanicgl Engineering
Stanford University

Stanford, California 1

Professor J. Kempner

Department of Aeronautical Engineering
and Applied Mechaniecs

Polytechnic Institute of Brooklyn

99 Livingston Street

Brooklyn 2, New York 1

Professor George Lee

Department of Aeronautical Engineering'

Renssalaer Polytechnic Institute
Troy, New York 1

Professor Paul Lieber

Department of Aeronautical Engineering
Renssalaser Polytechnic Institute

Troy, New York 1

Professor Glen Murphy, Head
Department of Theoretical &

Applied Mechanics

Iowa State College

Ames, Iowa 1

Professor N.M. Newmark

Department of Civil Engineering
University of Illinois

Urbana, Illinois 1
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Professor Jesse Ormondroyd
University of Michigan
Ann Arbor, Michigan 1

Dr. W, Osgood

Armour Research Institute

Technology Center

Chicago, Illinois 1

Dr. R.P. Petersen, Director
Applied Physics Division
Sandia Laboratory

Albuquerque, New Mexico 1

Dr. A. Phillips

School of Engineering

Stanford University

Stanford, California 1

Dr. W. Prager

Graduate Division of Appliec Mathematics
Brown University

Providence 12, R, I, 1

Dr. S. Raynor

Armour Research Foundation
Illinols Institute of Technology
Chicago, Illinois

Professor E, Reissner

Department of Mathematics
Massachusetts Institute of Technology
Cambridge 39, Massachusetts 1

Professor M,A. Sadowsky

I1linois Institute of Technology
_Technology Center

Chicago 15, Illinois 1

Professor V.L. Salerno

Department of Aeronautical Engineering
Renssalaer Polytechnic Institute

Troy, New York 1

Professor M.G, Salvadori

Department of Civil Engineering
Columbia University

Broadway at 117th Street

New York 27, New York 1

Professor J.E, Stallmeyer

Talbot Laboratory

Department of Civil Engineering
University of Illinois

Urbana, Illinois 1
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Professor E., Sternberg

Illinois Institute of Technology
Technology Center

Chicago 16, Illinois 1

'Professor R. G, Sturm
Purdue University
Lafayette, Indiana 1

Professor F., K. Teichmann

Department of Acronautical Engineering
New York University

University Heights, Bronx

New York, N. Y, 1

Professor C, T. Vang

Department of Acronautical Engineering
New York University

University Heights, Bronx

New York, N. Y. 1
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